fbpx

Tag Archives: Nursing Education

‘This will translate to the real world’: Nursing students learn skills through virtual reality

Nursing student being introduced to a scenario at UNE

Nursing students have had few opportunities to learn in hospital settings because of the COVID-19 pandemic. But, as this report from reports the Maine News Center demonstrates, virtual reality simulation from OMS is allowing students at the University of New England’s School of Nursing and Population Health  to learn skills that prepare them for the real world.

During class on UNE’s Portland campus, nursing students use virtual reality scenarios from OMS to assess patients as they would in real life. 

Having opportunities to build confidence and competence in this way is vital, as research shows that only 23% of nurses graduate feeling prepared for practice and 50% of entry-level nurses are involved in practice errors.

The inability to practice has only been made worse over the pandemic. As Dawne-Marie Dunbar, the director of the UNE Simulation Center notes:

“With the challenges of COVID-19, oftentimes are units are closed to our students, so being able to experience in the virtual reality has been a huge benefit”

— Dawne-Marie Dunbar, Director of the UNE Simulation Center

Nursing student being introduced to a scenario at UNE
Nursing student being introduced to a scenario at UNE
Dawne-Marie Dunbar, Director of the UNE Simulation Center

Some scenarios takes place in a hospital maternity ward. Students must first determine the symptoms of a pregnant patient, who was just sent over from her doctor’s office. Students check reflexes, vital signs of both mom and baby. 

As VR immerses completely immerses students in the virtual world, it convinces  the brain into believing the experience is real. Kathleen Humphries, who is a senior in the program, said the scenarios make her feel like she is actually in the room with the patient and allows more practice in emergency cases: 

“It allows us to screen for more critical cases where we need to do interventions and call providers”

— Kathleen Humphries, nursing student

After the students run through a scenario, they get immediate feedback on their mistakes without the stress of “practicing” skills on a real patient.

Developing this confidence is crucial to develop independent, capable nurses of the future. A 2020 report highlighted poor clinical decision-making as a factor in 65% of entry-level nurse errors and also found that just one-third of graduate nurses are confident in their practice. 

The good news is that VR simulation scenarios such as those used by UNE can significantly improve knowledge retention and self-confidence in learners. Unlike with traditional training, scenarios can also can be repeated as often as needed to improve skills.

“A lot of times we can go back in and redo the scenario and it’s a good opportunity to really learn”

— Katy Hancock, nursing student

Following the ongoing success of the VR program in nursing, the team at UNE are now looking to expand VR to cover PAs and other healthcare professionals. 

Interested in trying VR sim? Arrange a free demo with us today.

Distance and Virtual Simulation Resources

It’s been over two months since many institutions across the world have had to cancel face-to-face education. Let’s take a minute to celebrate the immense amount of work, adaptation and change educators and students alike have had to do in order to continue delivering quality education at a distance!

One of our values here at OMS is collaboration. As we all continue to adapt to the new normal and consider the Fall semester, we’d like to partner, assist and collaborate with faculty in the process of implementing distance and virtual simulation. 

We do this in our everyday work as we chat with you about your needs and learning objectives. We’re also helping by continuing to offer our 60-day free Implementation trial to support distance learning. And we’ve now created a suite of guides, activities and templates to help you implement OMS in the distance learning classroom. 

We’ve been able to create many of these resources thanks to the quick work of the  #FOAMsim community, who have banded together to share their knowledge about the implementation of virtual simulation. Expert authors and communities of practice such as the International Nursing Association of Clinical Simulation and Learning (INACSL), Simulation Canada, Margaret Verkyl, Cynthia Foronda, Jocelyn Ludlow, and more have released a wealth of information related to virtual simulation. A few of our favorites are:

INACSL Micro Webinars 

  • Evidence to Support Virtual Simulation as an Effective Pedagogy During the Pandemic: Research and Policy Implications
  • Prebriefing Guide for Online, Remote and Virtual Simulations
  • Debriefing Virtual Simulation: The Evidence and Recommendations

Simulation Canada Webinars

OMS Blog and Webinar

While we’re all for staying as up-to-date and informed as possible and reviewing primary sources of information, we also recognize that time is a precious resource, so save you time and energy we’ve watched all the webinars and read the relevant research!

With any OMS trial we therefore provide free consultation on best-practice for virtual and distance simulation implementation, blended learning tools and access to our latest evidence-based resources for faculty.

These cover topics such as:

  • Considerations for implementing distance and virtual simulation, including setting expectations, grading (or not), preparatory work, debriefs, and post-scenario activities
  • Walkthrough guides for synchronous and asynchronous distance and virtual simulation activities
  • Self-reflection activities for students
  • …with more to come!

In the meantime, in the spirit of #FOAMsim you can now download one of these resouces “OMS Distance Faculty Resource: Setting Expectations for Learners” below. We’d love to hear your feedback on it!

Download: Setting expectations for learners

For access to all the resources above, please get in contact with us. For updated information please also consider signing up for our monthly newsletter which includes up-to-date research and news from the virtual simulation community. 

Thanks for your time, onwards and upwards! 

Post by Christina Choung, RN, BScN, CHSE – Educational Specialist at Oxford Medical Simulation

CONTACT US

Using Distance Simulation to Supplement Clinical Hours

Clinical hours replacement with VR simulation
Nursing Virtual Simulation Oxford Medical Simulation
Nursing Virtual Simulation Oxford Medical Simulation

In these uncertain times, universities and hospitals are being forced to reconsider how to train their learners and keep students on track to graduate or promote the next wave of healthcare providers. 

For some, the question of how to supplement clinical hours with simulation has been an ongoing question or debate. Now, simulation is no longer a “nice to have” learning modality for programs but a “need to have”. Furthermore, live simulation is no longer an option for most so the question becomes, how can virtual simulation be used to supplement or replace lost clinical hours?

This is a question on so many minds at the moment and while the research and data to fully support this answer is still coming, there are several existing resources and theories around simulation-based education that can be used to help answer it. 

“Simulation is no longer a ‘nice to have’ learning modality, but a ‘need to have'”

Can I Use Virtual Simulation for Clinical Hour Replacement?

First, there is the initial question of can virtual simulation be used to replace clinical hours at all? According to a statement released by Dr. Foronda (president of INACSL) and Bob Armstrong (president of SSH) the evidence and these organizations support the use of virtual simulation to replace clinical hours. This statement outlines the problem being that students may be blocked from graduating from their programs because of clinical hour requirements.

This ultimately comes down to the state policymakers but many states in the United States have already loosened the reins on these requirements to allow for flexibility. In a time where there are already shortages in medical personnel and now a pandemic on top of that, it is critical to support the training and promotion of these health care students to practicing health care professionals (doing so in a way that still provides them the best educational experience possible). 

The next question for some whose state legislation allows high-fidelity simulation to replace clinical hours is: does virtual reality or virtual simulation count as high-fidelity simulation? The answer to that, based on the SSH definition of high-fidelity simulation is clear: Yes.

According to the SSH Dictionary,  “high-fidelity refers to simulation experiences that are extremely realistic and provide a high level of interactivity and realism for the learner” which includes virtual reality. 

“Does virtual reality or virtual simulation count as high-fidelity simulation? The answer to that, based on the SSH definition of high-fidelity simulation is clear: Yes”

Clinical hours replacement with VR simulation
Clinical hours replacement with VR simulation
COVID-19 PROGRAM COVID-19 PROGRAM DETAILS

How Much Time in Virtual Simulation Equals Clinical Experience?

Now that we’ve established virtual reality and virtual simulation is high-fidelity simulation and there is evidence to support its use in place of live clinical experiences during this pandemic, the primary question has been how many clinical hours can be replaced with virtual simulation. 

The answer to this depends on the source of virtual simulation, the resources provided before and after and the structure in which the simulations are implemented into the curriculum. The following is one example, using an OMS Distance nursing simulation scenario, in which one scenario could replace up to 4 hours of clinical. This same structure can also be used for the medical scenarios or interprofessional education scenarios depending on how they are implemented.

This example is based on using the INACSL Standards of Best Practice: Simulation Design and Debriefing to support prebriefing and debriefing activities before and after simulation. It is also using evidence from the 2019 study supporting 2:1 clinical to simulation hour ratio

The following example was created starting with the simulation itself and working out (adding pre-simulation and post-simulation activities). Again, this is based on personal experience as a simulation educator, what is known about the standards of best practice and specifically using OMS scenarios as an example. These guidelines can be used for any virtual simulation and then can translate back to live simulation or live VR simulation (headset or HMD) when learners are able to return to campus.

To allow learners the opportunity to practice critical thinking and efficient patient care, each scenario is 20 minutes in length. Although the question of how long to debrief an experience has been debated, the research and best practice that I’ve always been taught is to debrief for twice the length of the scenario.

In this case, 40 minutes which can include the provided self-reflection and personalized feedback. In this example, 1 virtual OMS simulation scenario could equate to 1 full hour of simulation or clinical experience; however, there is much more that can and should be built into this simulation experience to increase the value as well as length of time. 

How Do I Use Deliberate Practice in Virtual Simulation?

There are several simulation practices that can enhance the learning experience that can be incorporated into this timeline. First, deliberate practice which improves critical thinking, clinical judgment, decision making and confidence. An advantage of using virtual simulation, whether on screen or in a headset, is the ability to allow students to repeat scenarios as many times as they’d like (deliberate practice). This practice provides the personalized and individualized experience of running a scenario again and again without adding the time, space, or cost associated with running a live simulation again and again. In this example, it’s suggested to have the students run the scenario at least twice. 

Can I Use Reflective Pause / Reflection-in-action?

Another tool that can be helpful in simulation-based learning is the reflective pause or focus on reflection-in-action. In this example, students are encouraged to reflect-on-action by reviewing the feedback and completing their reflection after the initial scenario. However, then by having students immediately return to the same scenario, now with the knowledge and insight gained from the first passthrough, they are better prepared to reflect-in-action during their subsequent experiences. 

As previously mentioned, in this virtual reality simulation platform, students are prompted to do a self-reflection immediately after completing the scenario. Then, they are given personalized yet objective feedback based on their clinical decision making during the scenario. And finally, there is a place provided for students to then complete and document a proper self-debrief or self-reflection. In this example, students can take about 20 minutes to do this after the first session, then extend that time using additional activities and debriefing methods to 40 minutes after the second session. A full timeline breakdown is provided below. 

How Do I Debrief Virtual Simulation?

According to the INACSL Standards of Best Practice: Simulation Design – criterion 8, each simulation should have a debriefing or feedback method and it should be consistent. While the self-reflection and feedback provided with OMS is based on the PEARLS method, there are several methods that can be used to debrief a virtual simulation

In this example, at least 40 minutes should be used in the final debriefing session which gives educators time to allow students to review the objective feedback and then break into additional group debriefing. This group debriefing can be via video conferencing (ideal) or via a chatroom style classroom on a learning management system. 

Additionally, students can be asked to complete a post-simulation activity to extend their learning experience and physical practice. For example, students can practice documenting their assessment from their virtual experience. On-screen virtual simulation (compared to headset/HMD VR) lends itself to this nicely as students can take notes as they go and catch missed items in their subsequent runs of the scenario. Documentation can be done in a note fashion or by using an EHR platform. EHR’s can also be created using Excel or Google Forms. 

Another post-simulation activity option is to have students record themselves doing a shift-to-shift report based on the scenario. This report can then be posted to the LMS for peer review and feedback. 

Depending on the scheduling ease or conflicts, a group debrief immediately following the simulation experience may not be possible (although debriefing immediately after the experience is ideal). In this case, students can complete the self-reflection and conduct a self-debrief using the feedback, guided questions and supplemental post-simulation activities. If a group debrief is scheduled for a later time, students can then review and bring with them their feedback to this group discussion. 

To learn more about debriefing virtual simulations, see Simulation Canada‘s webinar “Virtual simulations: What are my debriefing options?

Should I Prebrief Virtual Simulation?

The last thing missing from this experience is prebriefing (INACSL Standard of Best Practice: Simulation Design, criterion 7) which does not have to look very different from prebriefing a live simulation experience. In live simulation, students may be provided with a room orientation, orientation to equipment, learning objectives, pre-simulation activities, a timeline, and the opportunity to ask questions. Using the LMS, students can be provided with learning objectives, pre-simulation activities or reading assignments, as well as a forum to ask questions and troubleshoot before their virtual simulation. Room and equipment orientation is then provided by OMS via videos to teach or remind students how to navigate the virtual scenarios and review the feedback. Educators or former students could also include a recorded shift report for students to review online prior to entering the OMS scenario. 

The biggest foreseen difference between a live simulation prebrief and virtual simulation prebrief is that the responsibility and time required to complete this falls on the student. In this example, prebriefing time will be considered 20 minutes. To help guide and track students time, part of the prebriefing experience should be providing the students with the expected timeline for this experience. An example of this posted to the LMS may look like this:

Today’s Simulation Experience timeline:

  1. Please complete the pre-simulation activities (20 minutes)
  2. Complete simulation scenario – George, SNR101US (20 minutes)
  3. Review feedback and complete “My reflective practice” (20 minutes) – Reflection must be 3+ sentences and shared to faculty
  4. Repeat simulation scenario – George, SNR101US (20 minutes)
  5. Review feedback, complete “My reflective practice” comparing first attempt to second attempt, complete additional post-simulation assignment (group debrief, documentation assignment, individual debrief using worksheet or tool, etc) (40 minutes)

“In this virtual simulation example, the 2 hour virtual simulation experience (based on a 20 minute scenario run twice with structured prebriefing before and debriefing after) would equal 4 hours of clinical time.”

Final Timeline Review

In review, we’ve now taken a single virtual reality simulation scenario and structured it’s execution to equate to 2 hours of simulation time. 

The final element of this “how much clinical time equals virtual simulation” debate is considering how much live simulation is considered clinical time. In this scenario, we are considering virtual simulation and live simulation time equivalent, although future research and data can hopefully help clear up whether that ratio is appropriate. 

Due to the increased intensity and efficiency of simulation, evidence supports using a 1:2 ratio for simulation to clinical time. What this means is that for every 1 hour of simulation, students are given 2 hours of clinical time. In this virtual simulation example, the 2 hour virtual simulation experience (based on a 20 minute scenario run twice with structured prebriefing before and debriefing after) would equal 4 hours of clinical time. 

This information, as well as a discussion and demonstration of the OMS Distance platform is also provided as a Webinar. To access the webinar or discuss this further with an Educational Specialist, please click below.

SEE THE WEBINAR WEBINAR

Article by Molly Schleicher RN, MSN, CHSE – Educational Specialist at Oxford Medical Simulation

CONTACT US

Distance learning during COVID-19

Online distance medical and nursing simulation

Rapidly implementing online simulation during COVID-19

Faced with the  COVID-19 outbreak organizations all across the world  have cancelled all face to face classes. Exams are being postponed and educators are struggling to quickly transition learning resources online. However, perhaps the most difficult of these challenges is the sudden inability to meet clinical requirements.

We appreciate how hard it is to deliver simulation and clinical education at the best of times, let alone during a crisis. As simulation educators, the team at OMS have experienced the chaos caused by last-minute clinical cancellations and the need to rapidly deliver simulation to fill the gap.

This same phenomenon is now happening on a global scale. In response, OMS immediately offered the OMS Distance Simulation platform free across the US, Canada and the UK as of March 16, 2020.

Why? Well, as one of the OMS educational specialists notes:

“We are sim people, educators and folks who ultimately care about patient lives. This is a chance to train nurses and doctors when they need it most… this is exactly why we got into this in the first place!”

The OMS Distance Simulation Program

The OMS virtual simulation platform runs both in immersive virtual reality (using a VR headset) and as a screen-based simulation  using the learner’s own PC or laptop (no VR equipment required). It is, in fact, one platform delivered in two different ways. 

Scenarios are just as interactive and dynamic whether in VR or on screen. This provides immediate scale and accessibility during social distancing and the ability to switch to fully immersive virtual reality as required. 

OMS has hundreds of cases across medicine and nursing, dynamic scenarios,  fully-automated feedback and debriefing tools, embedded blended learning resources and simple methods of integrating with curriculum requirements. All of this is offered for free, with no ongoing commitment, until the situation improves.

COVID-19 PROGRAM DETAILS MORE DETAILS
Online distance medical and nursing simulation
Online distance medical and nursing simulation

Uptake of OMS Distance during COVID-19

Since May 16, over 50 institutions – with over 17,000 learners between them – have signed up. Many have started utilizing the platform already and many more will start over the coming days. This is being done across all levels of medicine and nursing and for many different use cases:

  • Nursing programs (BSN and NP), unable to deliver clinical placements 
  • Medical programs (DO and MD), fast-tracking their learners for clinical practice 
  • Hospitals, upskilling clinicians moving between departments
  • Health systems, rapidly bringing in new nurses and retraining clinicians returning to practice

Implementing and integrating online simulation

Organizations are using OMS Distance in many different ways. Many are providing it to learners at home. This may be either for just-in-time simulation for those returning to practice, or in schools and colleges by allocating learners to specific scenarios at different times to align with curriculum requirements. Educators can then asynchronously debrief over a video conference, using the automated performance feedback and the learner’s case reflection as a springboard for debriefing.

Others are using OMS Distance for group learning – having learners go through the same scenario at the same time, then group debriefing and case teaching over a video conference. This allows for more team discussion of cases, and the ability to review labs, imaging and EKGs as a class.  

Others are limiting what they expect the learners to do in a scenario – asking them to only perform the history and physical exam from the clinical scenarios, using this as a clinical experience structured with more junior learners  in mind. 

Ultimately, there is no ‘correct’ way of using the OMS system, which makes the platform versatile enough to fit around any program’s goals. 

LEARN MORE ABOUT OMS DISTANCE LEARN MORE

Here to help

OMS works with institutions to help them solve their problems and fulfil their goals – whatever they may be – by providing clinical experiences on demand. Ultimately, we are here to help.

Our educational specialists and support team are working around the clock to provide educators with all the assistance you need through this time – if you think we may be able to help please get in touch.

The scale of the task for healthcare and healthcare education is enormous, and it is an honor to be able to support clinicians and educators through this time of uncertainty.

REGISTER YOUR INTEREST

If you are in the USA, Canada or the UK and an affected educational institution complete the details below and we will get back to you as soon as possible.



Virtual Reality World Tech Magazine: Informed Immersion

Immersive technology is making significant strides in training medical professionals and as a treatment in health and wellness.

There are many ways that virtual reality (VR) can be applied in healthcare – from training medical professionals to aiding surgeons through visualisation or even robotics. But where is immersive tech really excelling right now, and what is it achieving for patients and medical professionals alike?

In the article below, Dr Jack Pottle, Chief Medical Officer at Oxford Medical Simulation, speaks to VR World Tech – discussing the views and often misconceptions that institutions have about immersive tech…

Read the full interview here

CONTACT US

What is VR simulation good for in 2020?

Every year, January brings the largest event in the global simulation calendar: IMSH. This year, we were excited by the ongoing and mounting interest in virtual reality simulation and improved learner outcomes.

 

Shifting perspectives 

At IMSH this year we noticed a marked shift in the awareness and understanding of VR simulation in the wider simulation community. 

Back in 2019, people were asking, “What do you mean exactly when you say ‘VR?’”. This year we were instead asked “VR has been around for a few years… what’s it good for?” and “Is it practical enough to be used meaningfully for sim?”. 

These are excellent questions. 

Here, we look at some of the ways that VR sim can be used to; create efficiencies, optimize data and encourage flexible learning – including some of the crucial concepts to consider when looking to implement a VR platform in your simulation facility.

Doing More with Less

Physical (mannikin-based) simulation involves significant overhead costs. Research has shown that faculty/admin hours, equipment, maintenance, space, and consumables contribute to an average cost of $390 to deliver just one traditional simulation session(13).

In contrast, immersive VR is instantly scalable, allowing institutions to deliver more simulation experiences to their learners at a greatly reduced cost. Because VR simulation is repeatable and can be used without faculty supervision – meaning engaging clinical experiences can be provided using fewer valuable resources.

One recent study showed “no significant differences in quantitative measures of learning or performance” in VR vs. physical sim, but demonstrated that VR sim was more affordable(4). Institutions have capitalized on using VR to deliver sim that is 5 – 50x cheaper than physical sim.

The ultimate goal of using VR for sim is to increase access to this incredibly powerful teaching method and make simulation part of everyday life (not just when learners are in the sim center).

Consideration #1

When seeking to implement VR sim, make sure you consider whether or not you are looking for a faculty-independent platform that will free up the time needed to run simulation sessions, as not all solutions offer this.

Supporting Data-Driven Simulation

Collecting information about a learner’s performance and behavior during physical sim can be time-consuming and often requires subjective input. Using standardized simulations in immersive VR allows educators to deliver more simulation experiences whilst leveraging the data-tracking and analytic power of a technology-based system. 

This push towards data-driven learning experiences makes 2020  one of the most exciting times to be working in simulation and is empowering institutions to further the use of sim in ways previously considered impossible.

The most immediate – and important – use of this data is to support the performance improvement of learners. However, these analytics can further be used to research clinical behavior, supplement assessment techniques, and aid in recruitment processes.

Sim educators have historically struggled to show the economic impact of their efforts. Now, for the first time in history, having simple access to the type of data VR-based systems offer allows instructors to justify sim implementation to key stakeholders who are increasingly asking simulationists to “measure the effectiveness of what we do, how we do it, and why we do it.(5)

Consideration #2 

Platforms that offer standardized and peer-reviewed VR scenarios allow for detailed, personalized, and thorough analytics. Creating custom content in VR is undoubtedly appealing and may be useful in certain cases, however it removes the possibility of having rich, scalable feedback across cohorts. Implementing a broad range of standardized scenarios may provide you with the same variations as building your own, without compromising the levels of feedback you can give to learners.

Meeting Demands of Flexible Learning

Studies are increasingly finding that immersing a learner into a virtual world via a Head-Mounted-Display (HMD) has a greater impact on educational outcomes than screen-based learning(6). However, as simulation becomes a part of everyday life and distance-learning options are increasingly in favor, institutions need a way to deliver these simulations when VR hardware is not available.

Meeting the evolving educational needs of hospitals and universities means using a virtual reality platform that can support immersive VR sim in addition to an identical screen-based experience. 

Consideration #3 

As you consider approaching a hybrid VR-immersion/screen-based implementation, evaluate whether or not your learners will also need to use VR for group-based simulations, individual learning sessions, and multiplayer for interprofessional simulation experiences. 

We’re excited to see how our partners – and the wider sim community – will continue to advance the use of virtual reality in simulation in 2020. For more information about how VR simulation can work for you, contact us here.

References

  1. McIntosh (2006). Simulation: What does it really cost? 
  2. Iglesias-Vázquez (2007). Cost-efficiency assessment of Advanced Life Support (ALS) courses based on the comparison of advanced simulators with conventional manikins. 
  3. Pottle (2019). Virtual Reality Medical Simulation: Economic Evaluation and Return on Investment. Available on request.
  4. Haerling (2018). Cost-Utility Analysis of Virtual and Mannequin-Based Simulation. 
  5. Waxman (2019). SSH March Presidential Message. 
  6. Krokos, Plaisant, and Varshney (2019). Virtual memory palaces: immersion aids recall.

CONTACT US

Introducing OMS Interprofessional

Oxford Medical Simulation is excited to announce the launch of multiplayer virtual reality training with OMS Interprofessional

 

OMS Interprofessional is the multiplayer VR simulation platform from Oxford Medical Simulation (OMS). OMS Interprofessional allows multiple learners to be in the same virtual reality scenario at one time, whether they are in the same room or different countries. Learners can collaborate, discuss and make decisions as a team, just like in real life, to improve patient care

Driven by our mission to provide healthcare professionals with quality, effective clinical training at scale our multiplayer scenarios are fully immersive and interactive. Learners across disciplines can now practice managing patients as a team in real life clinical environments without risking patient safety. This regular, flexible training builds teamwork, confidence, competence and optimises transfer of learning to practice. 

How does it work? 

Using VR headsets, learners are immersed in clinical environments with dynamic, engaging patients in true-to-life clinical scenarios where they can assess and treat patients in collaboration with their colleagues. Learners can see multiple patients, interviewing,  examining, investigating, engaging with their interdisciplinary team to treat their patient – who responds as in real life. 

The focus in OMS Interprofessional is on teamwork, communication, critical thinking and clinical reasoning – allowing clinicians to apply their knowledge and learn together. After each scenario learners enter a group debriefing environment, allowing them to analyse performance as a team, discussing the case and focusing on human factors just like in traditional simulation. 

Team performance analytics are also available to learners and faculty to facilitate debriefing, progress tracking and needs identification. Learners can enter the multiplayer environment with faculty or as independent teams allowing for flexible and adaptive use cases. 

What are the benefits? 

There are multiple benefits to integrating OMS Interprofessional into healthcare training curricula. The immersive team-based scenarios allow interdisciplinary teams to work together repeatedly at any time to refine teamwork and communication skills. This flexible system lets organizations deliver simulation efficiently and effectively to improve patient care.

The portable, stand-alone OMS system is simple set-up, while intuitive, faculty-free use allows organizations to scale simulation delivery and integrate simulation into everyday practice.Moreover, multiplayer VR simulation allows learners to be trained at distance, entering scenarios from anywhere in the world regardless of their proximity to faculty and physical training locations. Faculty can be based in New York and train learners in Nairobi!

Every scenario accurately mirrors real-life,  with peer-reviewed presentations, adaptive conversation, pharmaceutical modelling and dynamic physiology to ensure clinical realism. This provides consistently quality, standardized simulation on demand. The OMS system then provides immediate, intelligent, team-based feedback on technical and non-technical skills, consolidating knowledge and facilitating debrief. Detailed metrics and analytics dashboards allow organizations to objectively measure performance and track improvements over time, whilst customizable feedback and blended learning allow seamlessly integration with curriculum requirements and protocols. 

GET IN TOUCH TO TRY IT TRY IT OUT

CONTACT US

Supporting Nursing Education at the University of New England

Virtual Reality (VR) simulation allows nursing students at the University of New England to practice caring for acutely ill virtual patients within an immersive, realistic setting.

The University of New England (UNE) is working with Oxford Medical Simulation (OMS) to deliver state-of-the-art virtual reality software to transform nursing education. 

The immersive virtual reality platform supports nursing students at the UNE School of Nursing and Population Health in providing simulated patient care to advance clinical decision making and communication skills with other health care providers. This training allows nursing students to practice in true-to-life virtual scenarios without posing risk or harm to patients and families.

The technology is developed by Oxford Medical Simulation, an award-winning VR simulation company – based in Boston and London – and allows nursing student to practice treating acutely ill patients in a simulated, virtual environment. This optimizes skill development including clinical reasoning, decision making and patient/team communication, resulting in increased competence and confidence in managing complex care. 

UNE’s Interprofessional Simulation and Innovation Center (ISIC) is committed to providing state of the art experiential learning opportunities to health professional students,” said Director of Clinical Simulation Dawne-Marie Dunbar, MSN/Ed., RN, CNE, CHSE. “With the OMS VR platform, we will be able to increase simulation capabilities that offer students access to complex patient care scenarios while optimizing time, space, and resources.” 

This innovative technology allows UNE ISIC to engage students in expanded simulation-based experiences. Simulation refers to the use of simulated patients to practice delivery of acute patient care and is widely regarded as the most effective way of training health care professionals. Simulation is traditionally implemented with actors and/or manikins staged within a mock, realistic setting. However, high-fidelity simulation requires significant time, space, and budget. As a result students may only receive two-to-three simulation experiences per year. With virtual reality simulation, students are now able to practice simulated scenarios as often as needed.

“We’re delighted to be working with the University of New England to take nurse training to new heights. We developed OMS because we believe that training healthcare professionals in a flexible, zero-risk environment will transform patient care around the world. We all learn best from experience and the OMS system allows users at UNE to do just that – without putting patient’s lives at risk,” said Jack Pottle, MD, Chief Medical Officer of OMS.

The OMS system provides students access to libraries of nursing scenarios, supporting practice of care provision and clinical decision-making across a wide range of conditions such as sepsis, pneumonia, heart failure, and meningitis. Students enter the interactive virtual scenario using a VR headset and are greeted by a virtual mentor and their patient/family. Learner interaction with the patient mimics real-life engagement with a patient. Through this pedagogy (or experience), learners can examine the patient, ask questions, initiate treatment, and provide support/reassurance as they would in actual clinical practice. Every action the student takes is recorded and compared to best practice. Once the scenario is complete, the platform produces a comprehensive data analytics report providing the student with detailed feedback. This serves as a debriefing tool to guide reflection as to what went well and what they need to improve on.

LEARN MORE ABOUT UNE IMPLEMENTATION LEARN MORE

CONTACT US